PLASTIC DEFORMATION OF MATERIALS
UNDER COMPLEX LOADING

A. I. Imamutdinov ) UDC 539.374

This paper is a continuation of [1]. As in [1], there is satisfactory agreement between the calculations
and existing test data.

~ Suppose &y, £y, Exy and ox, Oys Txy are the components of the deformation and stress tensors in the
z = const plane (we will consider the case of a plane deformation). Assuming that the plastic state of the
element is determined solely by the deviators of these tensors, following [1], to determine the latter we will
introduce the vector representation: The deformationand stress deviators and their increments will be repre-
sented in the form of the vectors I', T, Ay, AT respectively, with polar coordinates I', 2Q,..., AT, 2¢ (Fig.
1)
T =1/-(sJc — &,)? + €3y, t8 2Q = xyl(E, — &),

Ac_ —A 2
AT = V( O. . Uy) + (ATxy)z, tg Z(p = 2A'ny/(A0’x — Ao-y).

The loading vector Ar will be represented by the sum of the simple and orthogonal loads A7 = AT'+
AT'. As in [1] we will assume that the orthogonal load A7"(At' = 0) causesa deformation increment Ayx,
which is characterized by two quantities: the angle 28 between the direction of Ay4 and the vector of the
principal shear T and the "shear modulus" p; With respect to the direction of Ar"

At = Atsin 208 — a) = p; sin 205 Ay, @ — ¢ = ¢ — Q). 48]
Unlike [1] we also assume that the simple loading AT'(AT" = 0) also causes a deformation increment

Ay}, which is also characterized by two quantities (Fig. 2): the angle 2yx between the direction of T' and the
vector Ay, and the "shear modulus” kp with respect to the direction of A7', so that

AT = Atcos 2§ — @) = i c0s 274A7Y, &)
(in [1] it was assumed that v = 0).

The total increment of the shear will then be equal to AT = Ay cos 2w = AyxCoS 2PBx+ Ayx COS 2,
and in the orthogonal direction 2T'AQ = Ay sin2w = Ay sin 284+ Avyy 8in 2. Eliminating Ayx, Ayy us-
ing (1) and (2) we obtain

. cos2 (9 — o) + ctg 2B .

Ar_A[ i 5 sm?.(ﬂ—a)],

2I‘AQ=AT[——~tg}fV* cos 2(§ — @) -;--————Si““"_“‘}.
P

s ®

Fig. 1
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Fig. 2

We will henceforth confine ourselves to considering the simplest form of complex loading, namely,
"monotonic loading," in which the main axes of the deformation tensor are constantly turned in one direction
during the loading. '

Wewill make the following assumptions: a) The quantities Bps Hts Bxs Vx depend only on I in the case
of monotonic loading (it is natural to assume that for a more complex deformation process these quantities
will depend not only on I', but, possibly, on other parameters of the deformation trajectory also [1]); b) the
vector of the deformation increments Ay can be represented by the sum of elastic deformation increments
Aye and plastic deformation increments Ayp: AT = AT'g + AT'p, 2I'AQ = 2TAQe + 2T AQp, Where AT'eg =
AT cos 2(¢ — a)/u; 2TAQe = AT sin 2($~ a)/u (4 is the elastic shear modulus).

The condition when AI‘p = 0 and 2I'AQp = 0 will be taken as the condition representing the approach
of complete unloading. Denoting by 2 (dy — o) the angle which the increment vector A+ makes with the direc-
tion T for the onset of complete unloading we obtain from (3)

ltgz(ﬁu—a)=—[—;——%)ﬁ; ®)
g2y, = (1 — 2) (1— 22}t o, 6)
We will require that the expression V = (1/2) At - Ay should be a "local”{ potential, in other words,
that the work 4 = %EMH dV, expended in the plastic deformation of the material (for a small change in the

a..
7
load), should not depend on the pathof integration or on the order in which the load is applied. We must then
have
av v
stz —a) = s@emmze ey — AL

Hence we also obtain from (5)

_t_gpz% Ctg ?ﬁ* _ 1/( o _>(E— ?}) {6)

Equation (6) shows that of the four parameters By, yx, Kp, pt introduced only two of them are independent
(we will take these to be up and pg).

We will now show that the model considered is a version of the theory of plastic flow. Taking (4) and
(6) into account we have

sxo=a=—t oo ) -

1
AT, = (—*C _ T) (Atcos2 () — o) + BATsin 2 (9 — @)],  2TAQ, = BAT, ®
whence it follows (since ZFASZP/ ATp tan 2(8; — @)=—1), that the plastic deformation vector Avyp is ortho-
gonal to the loaded surface, defined by (7), and that in the case when ut = u the loading surface at the point
considered has an angular singularity, while the case ut = p when o = 0 corresponds to the classical version
of the theory of plastic flow.

TThe idea of the existence of a "'local' potential was suggested by E. 1. Shemyakin,
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As regards the choice of pp and ut we will note that up is determined from the T = T(T') diagram,
obtained with proportional loading, while pt = ut(T) is established from experiments on orthogonal loading.
Bearing (8) in mind, we can suggest that to establish up and yt as a function of T, it is sufficient to carry
out only one experiment with a break in the loading trajectory at the elastic limit of this material. The cal-
culations essentially confirm this suggestion.

Finally, we will now give the basic relationship between the increments in the stress and the incre~
ments in the deformation

Ao — Ao Ao — Ao ) 1
Ae, — Mgy -z —E—F 4 A‘———————" 5 A+ Atg,Bl, ‘
A A ;;c ) : ®
ATy, Aa —Aa, Ag -+ Ao
AT S fl - i }),I: - 2 , ‘4 a ATxyB]1 AE'\: _:— Ae” i A2k’ y’
where
i t
A= / ——————co»ZQ—a— ——————sm2§2 B = —-——sm.‘ZQ
s ] / —‘/ Hy
-+ ‘/— — —-cos 2Q; L’ = const.

The last relation expresses the law of the elastic variation of the volume for a plane deformation [1].

To compare the calculations with experimental data we will use the experimental data obtained in [2].
In those experiments, thin-walled tubular specimens made of 248-T4 aluminum alloy (E = 6900 kg/ mm? and
g = 2400 kg/mm?®) were first stretched to the elastic limit so that considerable plastic deformation occurred,
and were then subjected to twisting with an additional stretching load. The x axis was directed along the
generatrix of the tube, and the y axis was directed along the tangential plane perpendicular to the x axis. For

this loading program the principal stresses oy, 03, 03 are given by the following relations:

o, G, \2 ° [ o_\2
0'1:l2—‘*—1- “//(—2‘1)‘{"7;1/7 o, =0, U3=-2'—l—l/(-?x)"}—’riy,1

where Txy is the tangential stress, and ox is the stretching stress (it is assumed that a plane uniform
stressed state is obtained in the specimens). In view of the fact that o4 > 0 > o3 (04, o3 have different signs),
then, as in the case of a plane deformation, the maximum tangential stress and the principal shear have the
form

r

1 5\
Tmax=T=.—z(0‘1—-—0‘3)—'~‘l/ (—23) + Tay, Ymax=T =g —¢g

Ve

Further, since ¢; > 0y > o3 this state corresponds to a state of incomplete plasticity [3, 4]. According
to [3], in this case along the second principal direction a linear (quasielastic) relationship between the stresses
and the deformations (or their increments) is preserved: Ag; = —(v4/E) X (Aq + Acgg), v = v4(T') . Hence,
from the fact that Agy + Aoy + Aoy = 3K(Ag; + Agy + Agg) (K = const), it follows that Ag; + Aez= (Aoy +
Acg)/2Kk' or Aex *+ Agy = (Aox *+ Acy)/2k', where

12k = 1/3K -~ v,/E. (10)

Repeating the discussions given above for this class of loading, we obtain the system of relations (9) in
which k' is given by (10). Figures 3 and 4 show programs of certain tests and compare the results of calcu-
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lation (the continuous line) w1th the results of experiments (we assumed in the calculations that pp = 270
kg/mm?, and pt = 960 kg/mm?). Comparison shows that there is quite satisfactory agreement between the
experunental and theoretical daia.

The author thanks E. 1. Shemyakin and R. 'Kh. Izmagilov for their help in carrying ouf this work.
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MOBILE LOAD ON A LAYER OF IDEALLY
PACKED MATERIAL

I. V. Simonov UDC 539.374

1. Physical Assumptions. A plane load, the shape and value of which does not change with time, moves
with constant velocity U, over the external surface of a layer of material of constant thickness h, lying with-
out friction on a rigid base. We will study the plane stationary motion of the medium when a shockwave U, >
D, exists, where Dy is the wave velocity of the corresponding pressure Py, in a system of coordinate (x, y)
(Fig. 1), connected with the moving load Pj(x) (Py{x) = 0, x >0, Py(0) = Py). Before the wavefront the
medium is unperturbed: P = 0, U= 0, p= py (P is the pressure, U is the mass velocity vector in the fixed
system of coordinates, and p, p; is the current and initial density).

The material satisfies the barotropic equation of state. Its P — § characteristic is shown in Fig. 2 (the
continuous line). The equation of the straight line KM is dP/dp = ¢? = const when P(8y) = Py (6= (p—
Pg)/ py is the volume deformation). This scheme is an idealization of the actual behavior of materials contain~
ing cavities or pores filled with easily compressed material (the dashed line in Fig. 2). The initial nonlinear
part of the loading can sometimes be neglected when the characteristic pressure is higher than the pressure
for which the pores collapse, and a further increment in the deformation occurs due to deformation of the
matrix (for example, when the material is subjected to shock loading of considerable strength). For soft
metals this region is from tens to several hundreds of kilobars. In this case the volume deformations of the
matrix may remain small. For many materials the porosity is not reestablished when the load is removed,
and it is possible to assume that the deformation is linear-elastic when the load is removed. Since the level
of tangential stresses (determined by the relaxed amplitude of the elastic characteristic or limiting flow) is
much less than the pressure of fotal packing, the resistance to shear can be neglected.
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